-
-
Notifications
You must be signed in to change notification settings - Fork 573
Replace ELU
Katsuya Hyodo edited this page Dec 18, 2020
·
1 revision
import tensorflow as tf
from tensorflow.keras import Model, Input
from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, Add, ReLU, MaxPool2D, Reshape, Concatenate, ZeroPadding2D, Layer
from tensorflow.keras.initializers import Constant
from tensorflow.keras.backend import resize_images
from tensorflow.keras.activations import tanh
from tensorflow.math import sigmoid
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
import numpy as np
import sys
import tensorflow_datasets as tfds
# x = -0.1
alpha = 1.0
inputs = Input(shape=(10, 10, 3), batch_size=1, name='input')
# tf.math.maximum(0.0, x) + alpha * (tf.math.exp(tf.math.minimum(0.0, x)) - 1) -> <tf.Tensor: shape=(), dtype=float32, numpy=-0.09516257>
# tf.math.maximum(0.0, x) + alpha * (tf.math.pow(2.71828182845904, tf.math.minimum(0.0, x)) - 1) ->
# op1 = tf.math.maximum(0.0, inputs) + alpha * (tf.math.exp(tf.math.minimum(0.0, inputs)) - 1) # pattern1
# op1 = tf.math.maximum(0.0, inputs) + alpha * (tf.math.pow(2.71828182845904, tf.math.minimum(0.0, inputs)) - 1) # pattern2
op1 = tf.nn.elu(inputs) # pattern3
model = Model(inputs=[inputs], outputs=[op1])
model.summary()
tf.saved_model.save(model, 'saved_model_10x10')
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
with open('saved_model_10x10_float32.tflite', 'wb') as w:
w.write(tflite_model)
print('tflite convert complete! - saved_model_10x10_float32.tflite')
def representative_dataset_gen():
for data in raw_test_data.take(10):
image = data['image'].numpy()
image = tf.image.resize(image, (10, 10))
image = image[np.newaxis,:,:,:]
image = image / 255
yield [image]
raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="~/TFDS", download=False)
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8, tf.lite.OpsSet.SELECT_TF_OPS]
converter.inference_input_type = tf.int8
converter.inference_output_type = tf.int8
converter.representative_dataset = representative_dataset_gen
tflite_quant_model = converter.convert()
with open('saved_model_10x10_full_integer_quant.tflite', 'wb') as w:
w.write(tflite_quant_model)
print('Full Integer Quantization complete! - saved_model_10x10_full_integer_quant.tflite')